To factor the expression \(x^4 + 4\), we can use a technique involving completing the square and then factoring by grouping. Here are the steps:
1. **Complete the square:**
Notice that \(x^4 + 4\) can be written as:
\[ x^4 + 4 = (x^2)^2 + 4x^2 + 4 - 4x^2 \]
This is equivalent to:
\[ (x^2)^2 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - (2x)^2 \]
2. **Factor using the difference of squares:**
The expression \((x^2 + 2)^2 - (2x)^2\) is a difference of squares, which can be factored as:
\[ (a^2 - b^2) = (a + b)(a - b) \]
Here, \(a = x^2 + 2\) and \(b = 2x\), so:
\[ (x^2 + 2)^2 - (2x)^2 = (x^2 + 2 + 2x)(x^2 + 2 - 2x) \]
3. **Simplify the factors:**
The factored form of \(x^4 + 4\) is:
\[ (x^2 + 2x + 2)(x^2 - 2x + 2) \]
So, the factorization of \(x^4 + 4\) is:
\[(x^2 + 2x + 2)(x^2 - 2x + 2)\]
Prompt executed in 61.29 seconds
Комментариев нет:
Отправить комментарий